1,088 research outputs found

    Anonymous Single-Sign-On for n designated services with traceability

    Get PDF
    Anonymous Single-Sign-On authentication schemes have been proposed to allow users to access a service protected by a verifier without revealing their identity which has become more important due to the introduction of strong privacy regulations. In this paper we describe a new approach whereby anonymous authentication to different verifiers is achieved via authorisation tags and pseudonyms. The particular innovation of our scheme is authentication can only occur between a user and its designated verifier for a service, and the verification cannot be performed by any other verifier. The benefit of this authentication approach is that it prevents information leakage of a user's service access information, even if the verifiers for these services collude which each other. Our scheme also supports a trusted third party who is authorised to de-anonymise the user and reveal her whole services access information if required. Furthermore, our scheme is lightweight because it does not rely on attribute or policy-based signature schemes to enable access to multiple services. The scheme's security model is given together with a security proof, an implementation and a performance evaluation.Comment: 3

    Dementia and guardianship: challenges in social work practice in a health care setting

    Get PDF
    This thesis critically examines social work practice in complex and disputed situations where an alternative legal decision-maker is perceived as necessary for a person with dementia. Australia has unique adult guardianship legislation and social workers are actively engaged in the process in a variety of ways, such as weighing the benefits against the possible harm and lodging applications. Yet within the profession this is an area where there is very little research. The purpose of this study is therefore to enable social workers to better understand the dynamics involved in adult guardianship proceedings for a person with dementia and provide knowledge that can be used for more effective practice. The theoretical approach is to use perspectives from social constructionism, with the links which can be made to modernism and postmodernism being taken into account. Five research case studies were investigated drawing from the caseload of social workers in an aged care service at a large metropolitan hospital in Australia. A thematic network analysis of the findings showed that the research case studies are constantly evolving, where different players participate by bringing their own perspectives, and in this process alliances are formed which reflect underlying dynamics of power. There are many diverse and contested issues, such as varied understandings of dementia and capacity and differing constructions of the notions of risk, protection and responsibility. The implications for social work practice are that in a contemporary health and welfare context social work is well placed to make an important contribution through its traditional roles of negotiation, interpretation and mediation between those who have discursive rights and those who do not

    ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement

    Get PDF
    While many tailor made card game protocols are known, the vast majority of those suffer from three main issues: lack of mechanisms for distributing financial rewards and punishing cheaters, lack of composability guarantees and little flexibility, focusing on the specific game of poker. Even though folklore holds that poker protocols can be used to play any card game, this conjecture remains unproven and, in fact, does not hold for a number of protocols (including recent results). We both tackle the problem of constructing protocols for general card games and initiate a treatment of such protocols in the Universal Composability (UC) framework, introducing an ideal functionality that captures general card games constructed from a set of core card operations. Based on this formalism, we introduce Royale, the first UC-secure general card games which supports financial rewards/penalties enforcement. We remark that Royale also yields the first UC-secure poker protocol. Interestingly, Royale performs better than most previous works (that do not have composability guarantees), which we highlight through a detailed concrete complexity analysis and benchmarks from a prototype implementation

    Universally Composable Accumulators

    Get PDF
    Accumulators, first introduced by Benaloh and de Mare (Eurocrypt 1993), are compact representations of arbitrarily large sets and can be used to prove claims of membership or non-membership about the underlying set. They are almost exclusively used as building blocks in real-world complex systems, including anonymous credentials, group signatures and, more recently, anonymous cryptocurrencies. Having rigorous security analysis for such systems is crucial for their adoption and safe use in the real world, but it can turn out to be extremely challenging given their complexity. In this work, we provide the first universally composable (UC) treatment of cryptographic accumulators. There are many different types of accumulators: some support additions, some support deletions and some support both; and, orthogonally, some support proofs of membership, some support proofs of non-membership, and some support both. Additionally, some accumulators support public verifiability of set operations, and some do not. Our UC definition covers all of these types of accumulators concisely in a single functionality, and captures the two basic security properties of accumulators: correctness and soundness. We then prove the equivalence of our UC definition to standard accumulator definitions. This implies that existing popular accumulator schemes, such as the RSA accumulator, already meet our UC definition, and that the security proofs of existing systems that leverage such accumulators can be significantly simplified. Finally, we use our UC definition to get simple proofs of security. We build an accumulator in a modular way out of two weaker accumulators (in the style of Baldimtsi et. al (Euro S&P 2017), and we give a simple proof of its UC security. We also show how to simplify the proofs of security of complex systems such as anonymous credentials. Specifically, we show how to extend an anonymous credential system to support revocation by utilizing our results on UC accumulators

    UC Updatable Databases and Applications

    Get PDF
    We define an ideal functionality \Functionality_{\UD} and a construction \mathrm{\Pi_{\UD}} for an updatable database (\UD). \UD is a two-party protocol between an updater and a reader. The updater sets the database and updates it at any time throughout the protocol execution. The reader computes zero-knowledge (ZK) proofs of knowledge of database entries. These proofs prove that a value is stored at a certain position in the database, without revealing the position or the value. (Non-)updatable databases are implicitly used as building block in priced oblivious transfer, privacy-preserving billing and other privacy-preserving protocols. Typically, in those protocols the updater signs each database entry, and the reader proves knowledge of a signature on a database entry. Updating the database requires a revocation mechanism to revoke signatures on outdated database entries. Our construction \mathrm{\Pi_{\UD}} uses a non-hiding vector commitment (NHVC) scheme. The updater maps the database to a vector and commits to the database. This commitment can be updated efficiently at any time without needing a revocation mechanism. ZK proofs for reading a database entry have communication and amortized computation cost independent of the database size. Therefore, \mathrm{\Pi_{\UD}} is suitable for large databases. We implement \mathrm{\Pi_{\UD}} and our timings show that it is practical. In existing privacy-preserving protocols, a ZK proof of a database entry is intertwined with other tasks, e.g., proving further statements about the value read from the database or the position where it is stored. \Functionality_{\UD} allows us to improve modularity in protocol design by separating those tasks. We show how to use \Functionality_{\UD} as building block of a hybrid protocol along with other functionalities

    Compact E-Cash and Simulatable VRFs Revisited

    Get PDF
    Abstract. Efficient non-interactive zero-knowledge proofs are a powerful tool for solving many cryptographic problems. We apply the recent Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt 2008) to two related cryptographic problems: compact e-cash (Eurocrypt 2005) and simulatable verifiable random functions (CRYPTO 2007). We present the first efficient compact e-cash scheme that does not rely on a random oracle. To this end we construct efficient GS proofs for signature possession, pseudo randomness and set membership. The GS proofs for pseudorandom functions give rise to a much cleaner and substantially faster construction of simulatable verifiable random functions (sVRF) under a weaker number theoretic assumption. We obtain the first efficient fully simulatable sVRF with a polynomial sized output domain (in the security parameter).

    UC Commitments for Modular Protocol Design and Applications to Revocation and Attribute Tokens

    Get PDF
    Complex cryptographic protocols are often designed from simple cryptographic primitives, such as signature schemes, encryption schemes, verifiable random functions, and zero-knowledge proofs, by bridging between them with commitments to some of their inputs and outputs. Unfortunately, the known universally composable (UC) functionalities for commitments and the cryptographic primitives mentioned above do not allow such constructions of higher-level protocols as hybrid protocols. Therefore, protocol designers typically resort to primitives with property-based definitions, often resulting in complex monolithic security proofs that are prone to mistakes and hard to verify. We address this gap by presenting a UC functionality for non-interactive commitments that enables modular constructions of complex protocols within the UC framework. We also show how the new functionality can be used to construct hybrid protocols that combine different UC functionalities and use commitments to ensure that the same inputs are provided to different functionalities. We further provide UC functionalities for attribute tokens and revocation that can be used as building blocks together with our UC commitments. As an example of building a complex system from these new UC building blocks, we provide a construction (a hybrid protocol) of anonymous attribute tokens with revocation. Unlike existing accumulator-based schemes, our scheme allows one to accumulate several revocation lists into a single commitment value and to hide the revocation status of a user from other users and verifiers

    I2PA, U-prove, and Idemix: An Evaluation of Memory Usage and Computing Time Efficiency in an IoT Context

    Full text link
    The Internet of Things (IoT), in spite of its innumerable advantages, brings many challenges namely issues about users' privacy preservation and constraints about lightweight cryptography. Lightweight cryptography is of capital importance since IoT devices are qualified to be resource-constrained. To address these challenges, several Attribute-Based Credentials (ABC) schemes have been designed including I2PA, U-prove, and Idemix. Even though these schemes have very strong cryptographic bases, their performance in resource-constrained devices is a question that deserves special attention. This paper aims to conduct a performance evaluation of these schemes on issuance and verification protocols regarding memory usage and computing time. Recorded results show that both I2PA and U-prove present very interesting results regarding memory usage and computing time while Idemix presents very low performance with regard to computing time
    corecore